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Abstract
It is commonly thought that a state-dependent quantity, after being averaged
over a classical ensemble of random Hamiltonians, will always become
independent of the state. We point out that this is in general incorrect: if the
ensemble of Hamiltonians is time-reversal invariant, and the quantity involves
the state in higher than bilinear order, then we show that the quantity is only a
constant over the orbits of the invariance group on the Hilbert space. Examples
include fidelity and decoherence in appropriate models.

PACS numbers: 03.65.−w, 03.65.Yz, 05.45.Mt

Whereas eigenfunctions of time-reversal-invariant (TRI) systems can always be chosen real,
complex linear combinations of such functions display different statistical properties than
real ones. While this observation is trivial, its consequences for applications of random
matrix theory (RMT) have been largely ignored. We shall show that these consequences are
important in properties of higher (mainly fourth) order in the wavefunctions, such as transition
probabilities, (inverse) participation ratios, fidelity, purity or von Neumann entropy. While
these effects are often subleading in the dimension N of Hilbert space, for several quantities
of physical interest, including inverse participation ratios and purity decay rates, the effects
do appear at leading order. Moreover, when considering entanglement or decoherence in
the context of quantum information we often deal with small Hilbert spaces, possibly even a
single qubit, where the choice of a real or complex initial state becomes extremely important.
Among the classical ensembles of Hamiltonians, namely the Gaussian orthogonal, unitary
and symplectic ensembles (GOE, GUE, GSE) as described by Cartan [1], GOE and GSE
represent TRI systems and GUE represents non-TRI ones. In the GUE case, averaging over
Hilbert space is implicit in the ensemble average, but this is not the case for the two TRI
ensembles with important consequences, some of which will be discussed in this paper. The
same holds for the corresponding circular ensembles of unitary matrices [2]. Among more
general ensembles, such as the chiral ones, similar distinctions have to be made [3]. Note

1751-8113/07/491063+06$30.00 © 2007 IOP Publishing Ltd Printed in the UK F1063

http://dx.doi.org/10.1088/1751-8113/40/49/F04
mailto:carlospgmat03@gmail.com
mailto:seligman44@yahoo.com.mx
http://stacks.iop.org/JPhysA/40/F1063


F1064 Fast Track Communication

that the problems addressed involve statistics of the wavefunctions only, and do not concern
spectral properties. Thus, the effects apply equally to TRI Gaussian and circular ensembles.
To avoid needless repetitions we limit ourselves to the GOE and COE for the TRI case.

A very simple problem illustrates the type of effect we deal with. Let us look at the
autocorrelation function

A(t) = |〈ψ | e−iHt |ψ〉|2 (1)

for a TRI Hamiltonian H drawn from a GOE. Its long-time average is equal to the inverse
participation ratio I |ψ〉 = ∑

|α〉|〈α|ψ〉|4, where |α〉 are the eigenstates of H. Since I|ψ〉 is a time
average, we may hope that it is equal to an ensemble average, independent of the initial state

|ψ〉, for a chaotic or mixing dynamics. Yet one easily finds that NI = 2N/(N + 1)
N→∞−−−→ 2

when averaged over all (complex) states, while NI = 3N/(N + 2)
N→∞−−−→ 3 when averaged

over all real states. The result is obvious, since in the former case 〈α|ψ〉 behave as random
complex variables, while in the latter case they behave as random real variables. Such effects
on the inverse participation ratio have been studied before in the context of wavefunction
statistics in billiards with TRI [4]. There a comparison was made between the choice of
real or complex initial state in TRI systems and the choice of a symmetric or non-symmetric
initial state in a system possessing a unitary symmetry, such as parity. Furthermore, initial
states were discussed that are linear combinations of real and complex random wavefunctions,
exhibiting a transition between the two limits.

In fact, taking a long-time average is unnecessary, and the effect is already visible in the
short-time dynamics of a TRI system. The average autocorrelation function, for large N, is
given by

〈A(t > 0)〉 =

⎧⎪⎨
⎪⎩

2 − b2(t/τH)

N
for complex |ψ〉,

3 − b2(t/τH)

N
for real |ψ〉,

(2)

〈· · ·〉 indicates an ensemble average, τH is the Heisenberg time of the Hamiltonian and b2(t)

is the two level form factor of the GOE [3]. For 0 < t � τH, we have simply 〈A(t)〉 ≈ 1/N

and 〈A(t)〉 ≈ 2/N , respectively, i.e. the short-time return probability for a real initial state is
double that of a complex initial state in a TRI system. This weak localization effect is easily
understood in semiclassical terms, since the factor of 2 results from constructive interference
between each returning path and its time-reversed counterpart.

From these trivial examples, we see immediately that whenever we average a quantity
that is not bilinear in the wavefunction, the average over a TRI ensemble such as GOE or GSE
(and thus the time average if ergodicity holds) does depend on whether the initial state is real
(up to an overall phase) or complex.

Proposing an experiment is not altogether trivial. One possibility is to excite a solid
metal block elastically with M pings at different times and places, corresponding to a state
|ψ〉 = ∑M

j=1 eiφj |ψj 〉, where each |ψj 〉 is real but the relative phases are random. Assuming
all pings have the same strength, the average autocorrelation function at long times yields
(2 + 1/M)/N , e.g. 2.5/N for two pings versus 3/N for a single ping. Similarly, at short times
we have (1 + 1/M)/N . Such an experiment can be performed [5], though it might not be all
too interesting as the outcome is clear.

On a slightly more formal note we may say the following: starting from an arbitrary state
|ψ〉 in some Hilbert space H of dimension N, we shall cover, up to normalization, the entire
Hilbert space by the orbit of |ψ〉 traced by U(N) on H.

Consider now that the GUE can be defined as a set of diagonal matrices � with the
appropriate measure dν(�) composed with the unitary matrices u as u†�u, with the invariant
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Figure 1. The Bloch sphere [6], representing the orbits of states under the action of O(2).

Haar measure dµ(u). It is then immediately clear that averaging over the GUE will include
averaging over all states. In other words, a state-dependent quantity averaged over the
Hamiltonians is automatically constant throughout the Hilbert space. If, on the other hand,
we consider a GOE, the corresponding representation is o†�o with the Haar measure of the
orthogonal group dµ(o). The implicit averaging over states will then be limited to the orbits
of O(N) on the Hilbert space. A state-dependent quantity averaged over the Hamiltonians, in
the TRI case, is therefore only constant on the orbits of the original state.

If we consider the circular ensembles, the situation is slightly more involved, as the
symmetry operations defining these ensembles are not similarity transformations. Recall
that the CUE is the unitary group U(N) itself and thus is left and right invariant under U(N);
obviously this includes similarity transformations and thus again the ensemble average includes
state averaging. For the COE the situation is more complicated as the measure is invariant
under U(N), but if S is an element of the COE the operation is defined as dµ(S) = dµ(utSu).
Note that this is not a similarity transformation. Yet if we restrict U(N) to O(N) we have
a similarity transformation as the transpose of an orthogonal matrix is its inverse. Thus, the
same orbits discussed above describe the averaging we achieve with the ensemble average of
the Hamiltonians. The two-dimensional Hilbert space associated with a qubit provides the
best example. Representing this space in terms of the Bloch sphere, the orbits of O(2) are
rings around the y-axis of the sphere as illustrated in figure 1.

Considering the recent interest in developing RMT models for fidelity decay [7–9] and
decoherence [10–14], we may ask how the effect appears in this context. Clearly, the effect
will not be observed for the fidelity amplitude or for coherences (off-diagonal elements of
the density matrix), since these quantities are bilinear in the wavefunctions. On the other
hand, considerations regarding the choice of initial state will be highly relevant in the study of
fidelity, purity or von Neumann entropy. Indeed, initially puzzling results on purity decay for
one or two qubits [14] lead to, and will be at the centre of, the present analysis. The importance
of entanglement and decoherence of one- and two-qubit systems as the basic building blocks
of quantum information [6] justifies this focus, particularly as manipulations of qubits using
tools of quantum optics allow complex states to be produced in a very simple way. Yet we
shall start with the simpler case of fidelity decay, a benchmark in quantum information.

The fidelity amplitude is defined as

fε(t) = 〈ψ | e−iH0t eiHεt |ψ〉 (3)

and fidelity is given as Fε(t) = |fε(t)|2, where Hε = H0 + εV . Here |ψ〉 is any function, H0

is any Hamiltonian of interest, V is a perturbation and ε is a real parameter. In [8] both H0
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and V were modelled by random matrix ensembles. While in some special cases exact results
were obtained [15–17], linear response results were obtained in a wide variety of cases (see
[12] and references therein). In [8, 12] the linear response result for Fε(t) is given as

〈F(t)〉 = 〈|fε(t)|2〉 = 〈fε(t)〉2 + (2πε)2(2/βV )It2 + O(ε4), (4)

where I is the inverse participation ratio of |ψ〉 in the eigenbasis of H0 and βV = 1, 2, 4
specifies whether the perturbation is taken from a GOE, GUE or GSE. The validity of this
approximation can be extended by exponentiating the second-order term. The conclusion in
these papers was that for a random state I = O(1/N), and thus Fε ≈ 〈fε〉2. If we further
average over random states, this is still correct. Yet we can reasonably ask what the state-
averaged fidelity would be if the average is limited to some small subspace of the total Hilbert
space, which for some reason is interesting or experimentally accessible. Then the inverse
participation ratio is large and we observe an effect of order 1 exactly like the one discussed
above. The result without state average will depend on the initial state if we allow complex
states and consequently self-averaging is lost. In this example, the choice of the subspace over
which we average might be somewhat arbitrary, though often only certain frequency regions
are accessible.

For a composite system, the situation is different. We often have a natural separation
between a smaller system, which we call the central system, and an environment that interacts
with it. Typically we will be only interested in the central system, or only the central system
may be accessible to experiment. Such is the case for one or a few qubits coupled to an
environment, where both the environment and the coupling are modelled by random matrix
ensembles [13, 14].

Purity of a density matrix ρ is defined as P(ρ) = tr ρ2, and is a measure of the degree
of mixedness of the density matrix, or the degree of entanglement of a central system with
an environment. Thus it is also a measure of decoherence. Consider a single qubit and an
environment evolving under the Hamiltonian

H = He + λVe,q, (5)

where He acts on an environment of dimension Ne, Ve,q is a 2Ne × 2Ne matrix coupling the
qubit and the environment, and λ is a parameter controlling the strength of the coupling.
The initial state is a pure separable state. Let us choose both He and Ve,q from the GOE.
The resulting ensemble of Hamiltonians is invariant under local orthogonal transformations.
Evaluating purity of the qubit density matrix, in linear response approximation, we obtain for
large Ne [14]:

P(t) = 1 − λ2{t2 [3 − cos(2γ )] + 2tτH − 2B2(t)}, (6)

where

B2(t) = 2
∫ t

0
dτ

∫ τ

0
dτ ′b2(τ

′/τH ) (7)

is the double integral of the two-level GOE form factor and τH is the Heisenberg time of
the environment. γ is the angle between the xz plane and the representation in the Bloch
sphere of the initial state of the qubit. As, for a single qubit, purity and von Neumann entropy
S = −tr ρ log ρ have a one-to-one relation, (6) can be translated easily to obtain entropy
increase.

In figure 2 we show P(t) for γ = 0 (green squares), for γ = π/2 (blue circles) and
for random initial states in the whole Bloch sphere (red triangles). In contrast to the GUE
case, the average purity depends on the initial state (via the angle γ ). The fastest decay of
purity is observed for γ = π/2, where the state is orthogonal to its time-reversal image. The
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Figure 2. We display the behaviour of purity and von Neumann entropy, for initial qubit states
in different regions in the Bloch sphere, fixing λ = 10−3 and environment size Ne = 1024. The
coding is as follows: green (squares) for γ = 0, blue (circles) for γ = π/2 and red (triangles)
for arbitrary γ . For each case, the calculation was repeated 100 times with randomly chosen
realizations of He and Ve,q, and random initial states. The shaded coloured regions represent
envelopes encompassing all 100 runs, the average purity is indicated by symbols, and the predicted
behaviour of (6) is shown by solid curves.
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Figure 3. We plot the standard deviation of purity σP at time t = 40, as a function of the
environment dimension, using the same coding and value of λ as in the previous figure. For a fixed
value of γ (blue circles and green squares), there is asymptotic self-averaging, as indicated by the
line ∝1/

√
Ne. In contrast, for arbitrary initial conditions (red triangles), the standard deviation at

large Ne approaches the finite value predicted in (8), here plotted as a horizontal line.

slowest decay is observed for γ = 0, which characterizes TRI states. In figure 3, we show
numerical results for the standard deviation of the purity as a function of Ne, the dimension
of the Hilbert space of the environment. We consider the same cases as in figure 2. Note that
He, Ve,q and the initial state of the environment are randomly chosen from their respective
ensembles. We see that for fixed γ , the standard deviation falls off as N

−1/2
e . By contrast, the

standard deviation converges to a finite value when γ is unrestricted. Since, for Ne → ∞,
the variations in cos 2γ are the only source of purity fluctuations, the standard deviation of the
purity is

σP = 4

3
√

5
λ2t2 + O

(
λ4, N−1

e

)
. (8)

This value is plotted in figure 3.
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This result for a single qubit is especially significant in view of the fact that the decoherence
of several qubits can often (in the high-purity approximation) be reduced to the case of a single
qubit [18].

Summarizing, we have shown that, for the general (non-TRI) case, averaging over the
ensemble of Hermitian Hamiltonians (GUE) implies a full average over all states. For TRI
systems, on the other hand, if a state-dependent quantity is averaged over the ensemble of
real Hamiltonians (GOE), it will in general still depend on the orbit of the initial state under
the orthogonal group. We have shown that this actually happens, if the averaged quantity
depends on the state in higher than bilinear order. The variance of fidelity, in particular, shows
such behaviour, but it is of order 1/N , where N is the dimension of the system, and thus
often insignificant. We have further displayed a specific TRI random matrix model for the
decoherence of a qubit, for which the effect is of order 1.
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